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A formula for the sum of the odd powers of 2 is obtained from x, by factoring, and
then s(2") is easily computed.
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Magic Squares of Squares

JOHN P. ROBERTSON
560 Bair Road
Berwyn, PA 19312

A problem in the second edition of Guy’s Unsolved Problems in Number Theory [1] is
to prove or disprove that a three-by-three magic square can be constructed from nine
distinct integer squares (Problem D15). There are relationships between magic
squares, arithmetic progressions, Pythagorean right triangles, congruent numbers, and
elliptic curves. This note will follow this chain and show that the following three
problems are equivalent to the original problem:

P1. Prove or disprove that there are three arithmetic progressions such that each has
three terms, each has the same difference between terms as the other two, the
terms are all perfect squares, and the middle terms of the three arithmetic
progressions themselves form an arithmetic progression.

P2. Prove or disprove that there are three rational right triangles with the same area,
such that the squares of the hypotenuses are in arithmetic progression.

P3. Prove or disprove that there is an elliptic curve, y*=x%—n?x, where n is a
congruent number, with three rational points on the curve, (x,, y,), (x,, y,), and
(x3, y3), such that each point is “double” another rational point on the elliptic
curve (“double” in the sense of the group structure for points on an elliptic
curve), and x,, x,, and x4 are in arithmetic progression.

The original problem is due to LaBar [2]. Guy [1] notes that the problem requires
finding x, y, and z so that the nine quantities x%, y?, 2%, y® +22—x2% 2> +x2—y?,
x®+y?—2% 222 —y%, 222 — 2%, and 3x% — y% — 22, are distinct perfect squares.

Magic squares and arithmetic progressions For any three-by-three magic square
made up of distinct positive integers, there are three positive integers a, u, and v,
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such that the magic square can be expressed (possibly after rotation or reflection) as:

a+u+2v a a+2u+v
a+2u a+u+v a+2v
a+v a+2u+2v a+u.

(See Martin Gardner [3].) Note that any such magic square can be decomposed into
three arithmetic progressions:

a,at+u,a+2u;
atv,at+u+v,a+2u+v;
a+2v,a+u+2v,a+ 2u+2v.

Each of these three sequences has the same difference, u, between terms. Note also
that corresponding terms of the three sequences are in arithmetic progression, with
common difference v. Conversely, any set of three arithmetic progressions of length
three with a common difference, and corresponding terms in arithmetic progression,
can be rearranged into a three-by-three magic square.

For example, if a =1, u =1, and v =3, we get the familiar magic square:

8 1 6
3 5 7
4 9 2

The first equivalent formulation, P1, of the original problem should now be clear.

Squares in arithmetic progression It is well known that it is possible to have
three squares in arithmetic progression, but not four (Dickson [4, pp. 435-440]). For
any increasing three-term arithmetic progression of pairwise relatively prime squares,
r2, s2,¢2, there are positive integers p and g such that
r=Ilp®-2pq—q’l,
s=p*+q°, (*)
t=p*+2pg—q°,
p and q are relatively prime, and one of them is even (Dickson [4, pp. 437-438)). For
example, if r=1, s=5, and ¢t =7, then p=2and g=1.
If r2,s2,¢2 are in increasing arithmetic progression, but are not relatively prime,
then there are k, p, and g, with k a positive integer, p and g as above, and
r=klp*—2pq—q°,
s=k(p®+g?), and
t=k(p®+2pq—q*).
For the r2, s2, t2 just above, the difference between terms is
PO S S N 4k2(p3q —pg®).
Thus the original problem can be stated as find k,, p,, q,, kg, ps, s, k3, p3, and g,
so that

k¥(pig, —p197) =k3(p3gs —p2q3) =ki(pigs — pag3) >0,
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and

K3 (p3+47)" k3(p3 +q3)", and k3(p3+43)’
are distinct and in arithmetic progression. (Note that the fact that one cannot have
four squares in arithmetic progression makes unnecessary any further restrictions on
the “horizontal” and “vertical” differences between terms.)

It is easy to generate any number of three-term arithmetic progressions of squares,
all with the same difference between terms, as we now show. Let u?%, v, and w? be
in arithmetic progression. Let p=0v® and q=v?—u? Then for the three-term
arithmetic progression generated by p and ¢ using (), the difference between terms
is 4u?v?w?(v? — u?), which is a perfect square times v* — u2. Multiplying each term
of the sequence u?,v%,w? by 4u?p?w? gives a sequence with the same difference as
the sequence generated by p and q. This process of generating a new sequence from
a previous one (including the step of multiplying all previous sequences by the
appropriate constant so that all sequences have the same difference between terms)
can be continued indefinitely. If the new sequence is always derived from the last
sequence generated, then all the sequences will be different. This is not difficult to
prove, but we do not do that here.

As an example, start with the sequence generated from p =5 and g = 2 using (*).
These give the sequence 12,292,412, with difference of terms 840. Next let p= 29?% =
841 and q = 840 = 29% — 1% These give the sequence 1411199%, 1412881%, 14145617,
with difference of terms 840 X 23782 Not all sequences with difference a square
times 840 are generated in this way. For example, the sequences generated by p =6
and ¢g=1, and by p=8 and g=7 (and sequences generated from these two
sequences) have differences between terms that are a square times 840, but are not
included in the set of sequences generated from p =35 and g =2.

Pythagorean triples There are simple relationships between three-term arithmetic
progressions of squares and Pythagorean triples. The latter are related to congruent
numbers and rational points on elliptic curves, so these relationships will be of use to
us.

Every three-term arithmetic progression of squares, r2,s% %, can be associated
with a Pythagorean triple, X,Y,Z, with X2+ Y2=22% by taking X=(r+1t)/2,
Y=(¢t—r)/2, and Z =s. Conversely, each Pythagorean triple generates a three-term
arithmetic progression of squares by taking r=X-Y, s=Z, and t=X+Y. Two
three-term arithmetic progressions of squares have the same difference of terms if, and
only if, the corresponding Pythagorean right triangles have the same area. The second
equivalent formulation, P2, of the original problem should now be clear.

Congruent numbers The square-free part of XY /2 (the result of dividing XY /2
by the largest possible integer square), where X,Y,Z is a Pythagorean triple, is (by
definition) a congruent number. This is clearly also the square-free part of the
difference between terms of the associated three-term arithmetic progression of
squares.

It is more convenient to work with right triangles with square-free area. Note that if
k is the largest integer such that k? divides XY /2, then the area of the triangle with
sides X/k, Y/k, and Z/k is a square-free integer. In general, X/k, Y/k, and Z/k
will not be integers.

Elliptic curves If n is a congruent number, there is a well-known mapping from
rational right triangles with area n to rational points on the elliptic curve y® =3 — n’x
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given by
x=(Z/2)% y=(X2-Y?2)Z/8.

Koblitz [5] shows that for each such point, P = (x, y), there is another rational point,
Q, on the elliptic curve such that 2Q = P in the sense of the group structure (briefly
described below) for points on elliptic curves. Conversely, each rational point on the
elliptic curve that is the double of another point (except the point at infinity)
corresponds to a rational right triangle with area n. See Koblitz [5] for further details
on the correspondences between points on such elliptic curves and Pythagorean
triples. The third equivalent formulation, P3, of the original problem should now be
clear.

A group structure on an elliptic curve is described as follows. An elliptic curve
consists of the points (x, y) that satisfy the defining equation, plus a point at infinity,
which can be thought of as lying an infinite distance above the point (0,0). The
inverse, or negative, of a point P =(x, y) on the elliptic curve is the point —P =
(x,—y). The point at infinity is its own negative and is also the identity element for
the group operation. Every vertical line intersects the point at infinity, and these are
the only lines that intersect the point at infinity. If a line is tangent to the curve at
some point, consider the line to intersect the curve twice there, unless the line is
tangent to the curve at a point of inflection, in which case consider the line to
intersect the curve three times at that point. With these conventions, if a line
intersects the curve twice then the line intersects the curve exactly three times. This
fact can be used to define a group operation, @, by taking P& Q@ R=0 if P, Q,
and R lie on the same straight line. That is, P® Q= —R if P, Q, and R are
collinear. To determine P & P(= 2P) for a point other than the point at infinity, take
the tangent through P, find the other point of intersection with the curve, and take
the negative of this last point. If P and Q have rational coordinates, then P @ Q will
have rational coordinates. It is easy to see that ® is commutative, that each group
element has an inverse, and that the identity behaves as it should. That & is
associative is more difficult. See Koblitz [5], or other references on elliptic curves for
more details. The operation @, as we have defined it, is not the only way to define a
group structure on the elliptic curve (see Cassels [6]).

There is a relationship between the doubling of points on elliptic curves and the
method given above to generate a new three-term arithmetic progression of squares
from a given one. Namely, if the point P corresponds to the three-term arithmetic
progression u?, 0%, w?, then 2P corresponds to the three-term arithmetic progression
generated by (%) with p =v? and q = v? —u?.

One potential usefulness of the elliptic curve formulation is that, for a given
congruent number n, the group structure of rational points on elliptic curves shows
there are infinitely many candidates for terms in the needed arithmetic progression.
Thus, one can list as many candidates as one wants. Ideally, one “solves” the elliptic
curve, finding points that generate all rational points on the curve. Failing this, one
can often at least find some integral or rational points on the elliptic curve, and use
these to generate others. My experience has been that there usually are several
integral points with x values between —n and 0, from which other points can be
found. ‘

Elliptic curves of high rank might be more likely than curves of lower rank to have
three points meeting the conditions of formulation P3. (It is a theorem [5] that the
group of rational points for an elliptic curve is TX Z" where T is the subgroup
consisting of all elements of finite order. The rank is r.) Wada and Taira [7] compute
the ranks of all elliptic curves of the form y*=x®—n2x for all but 77 congruent



VOL. 69, NO. 4, OCTOBER 1996 293

n < 10,000. The curve has rank three for n = 1254, 2605, 2774, 3502, 4199, 4669,
4895, 6286, 6671, 7230, 7766, 8005, 9015, 9430, and 9654. Noda and Wada [8] has a
table that is an essential part of the results given in [7].

Martin Gardner ([9, 10]) also discusses this problem and gives some related results.

He offers $100 to the first person who constructs a three-by-three magic square of
distinct squares.
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1. Russian roulette Russian roulette provides a standard exercise in probability.
Let us quote from [1], p. 32:

Russian roulette is played with a revolver equipped with a rotatable
magazine of six shots. The revolver is loaded with one shot. The first
duellist, A, rotates the magazine at random, points the revolver at his head
and presses the trigger. If, afterwards, he is still alive, he hands the
revolver to the other duellist, B, who acts in the same way as A. The
players shoot alternately in this manner, until a shot goes off. Determine

the probability that A is killed.
The answer is 6/11.



